ON THE SOLUBILITY OF LANTHANUM OXIDE IN MOLTEN ALKALI FLUORIDES

M. Ambrová^{*}, J. Jurišová, V. Danielik and J. Gabčová

Department of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic

The solubilities of lanthanum oxide in LiF, NaF, KF and eutectic melt LiF–NaF–KF (46.5 mole% LiF; 11.5 mole% NaF and 42.0 mole% KF) were measured in order to find the suitable electrolyte for electrodeposition of lanthanum. Solidus-liquidus lines were obtained by the method of thermal analysis. The solubility of lanthanum oxide in alkali fluorides is rather low and decreases in the order LiF>NaF>KF.

It was found that lanthanum oxide reacts with the components of the melt. LaOF and alkali metal oxide are formed during dissolution of La_2O_3 in the melt.

Keywords: lanthanum oxide, molten alkali fluorides, solubility, thermal analysis

Introduction

Treatment of the spent nuclear fuel is one of the alternatives to the present storage of fuel in deep geological caves. The basic idea of the treatment is based on the transmutation of radionuclides that have a long radioactive period into the nuclides with short period. The possibility of chemical separation of long-living and short-living nuclides is also under study. Components forming spent fuel can be separated on the basis of their different physical and/or electrochemical properties (solubility, evaporation, formation of alloys, electrochemical deposition potentials, etc.). A promising way of separation of metals from spent oxide nuclear fuels can be based on their electrolysis in fluoride melts. It is known that molten alkali fluorides (for instance cryolite, lithium fluoride, sodium fluoride or potassium fluoride) are good solvents for oxides.

This work is a part of a project dealing with electroseparation of the components forming the spent nuclear fuel. Lanthanum compounds dissolved in fluoride melts were chosen as a model system. This paper deals with the solubility and phase diagrams of the systems lanthanum oxide – molten alkali fluoride. No data on the solubility or phase diagrams of the mentioned systems are available. Only a few data on solubility of other lanthanide oxides (CeO₂, Sm₂O₃, Nd₂O₃) are known [1].

The solubilities of CeO_2 and Sm_2O_3 in NaF–KF melt and CeO_2 , Sm_2O_3 and Nd_2O_3 in cryolite (Na₃AlF₆) were investigated by Berul and Voskresenskaya [1]. It was found that oxides of these trivalent lanthanides

form LnF₃ and LnOF (*Ln*=Sm, Nd) during their dissolution. In the case of samarium the formation of Na₃SmF₆ in NaF–KF melt was proposed. In cryolitic melts the formation of lanthanide oxyfluorocomplexes was mentioned. Stefanidaki *et al.* [2] studied the electrodeposition of neodymium in LiF–NdF₃, LiF–Nd₂O₃ and LiF–NdF₃–Nd₂O₃ melts. They found that neodymium oxyfluorides might be formed when neodymium oxide is added to the molten LiF.

Experimental

The temperatures of phase transitions were determined by the means of thermal analysis, recording the cooling and heating curves of mixtures at 2-5°C min⁻¹ in a resistance furnace with an adjustable cooling rate. A platinum crucible containing 30 g of sample was placed into the furnace which was pre-heated to the temperature of fusion of pure alkali fluoride. (At the compositions where crystallization of other substance than alkali fluoride was expected, the temperature was higher). The sample was kept for 3 h at the chosen temperature in the closed platinum crucible and melt was regularly stirred by a platinum ladle. The sample was slowly cooled after that time. The temperature was measured by a PtRh10-Pt thermocouple which was calibrated to the melting points of NaF, BaCl₂, NaCl, KCl, LiF and Na₂SO₄. The measured transition temperatures were reproducible within $\pm 2^{\circ}$ C and they are listed in Table 1.

^{*} Author for correspondence: marta.ambrova@stuba.sk

mary crystallization; $t_{\rm e}$ – eutectic temperature)		
$x (La_2O_3)$	$t_{\rm pc}/^{\rm o}{\rm C}$	$t_{\rm e}/^{\rm o}{\rm C}$
	LiF-La ₂ O ₃	
0	848	
0.01	840.1	827.4
0.01	841.3	828.7
0.01	840.9	828.2
0.015	836.3	
0.02		827.9
0.02	832.4	828.3
0.025	833.8	
0.03	850.3	828.2
0.03		830
0.05		829.2
0.06		828.6
0.06		829.4
0.07		828.4
0.07		828.8
0.08		829.1
	NaF-La ₂ O ₃	
0	996	
0.005	992	979.8
0.01	987.8	981.4
0.01	988	980.2
0.01	988.5	980.6
0.01		980
0.02	982.6	980.6
0.02	981.4	979.3
0.025	994.6	
0.04		982.3
0.05		979.4
0.06		982.4
0.07		980.6

 $\begin{array}{l} \textbf{Table 1} \mbox{ Measured transition temperatures in the systems} \\ MF-La_2O_3 \mbox{ (M=Li, Na, K$) and} \\ (LiF-NaF-KF)_{eut}-La_2O_3. \mbox{ (t_{pc} - temperature of pri-$

The following chemicals were used: LiF (Merck, Suprapur), NaF (Lachema, analytical grade), AlF₃, KF, La₂O₃ (Mikrochem, pure) and P₂O₅ (Mikrochem, analytical grade). LiF and NaF were dried in a drying oven at 600°C for 2 h; La₂O₃ and KF were dried in a vacuum drying oven in the presence of P₂O₅ for 1 week; AlF₃ was purified by sublimation.

The samples of the melt were analysed by X-ray diffraction (STOE automated theta/theta diffractometer, Germany, CoK_{α_1} radiation, λ =0.17902 nm) from 5–80° 20. The positions of the basal reflections were determined by Bede ZDS program.

Table 1 Continued KF-La ₂ O ₃				
0.002	856.2	849.4		
0.005	853.8	849.6		
0.005	854.3	849.8		
0.01	850.8			
0.01	850.1			
0.01	850.3			
0.015	859.6	849.7		
0.02	870.8	849.1		
0.02	870.4	849.3		
0.03		849.8		
0.04		849.6		
0.04		849.4		
[]	LiF-NaF-KF) _{eut} -La ₂	D ₃		
0	454			
0.005	452.3	446.6		
0.01	449.4	446.5		
0.015	447.2			
0.02	453.9	447.3		
0.03	470	446.5		
0.04	489.5	446.2		
0.05	512.7	444.8		
0.06	535.2	446		

Results and discussion

Solubility of lanthanum oxide in molten alkali fluorides is lower than 3 mole%. Therefore only parts of the phase diagrams near pure alkali fluorides were measured. A thermodynamic model suitable for description of the phase diagrams near the pure components was adopted. The thermodynamic model is based on the modified LeChatelier–Schröder equation [3, 4]

$$\ln x(MF) = \frac{\Delta H_{\text{fus}}^0(MF)}{Rk_{\text{St}}} \left(\frac{1}{T_{\text{fus}}(MF)} - \frac{1}{T} \right)$$
(1)

where x(MF) is the mole fraction of alkali fluoride in the molten mixture, $\Delta H_{\text{fus}}(MF)$ is the enthalpy of fusion of the alkali fluoride, $T_{\text{fus}}(MF)$ is the temperature of fusion of the pure alkali fluoride and *T* is the temperature of primary crystallization of the molten mixture. *R* is the gas constant and k_{St} is the Stortenbeker factor [5] which equals the number of new foreign particles that La₂O₃ brings into the solution.

This 'cryoscopic' model is valid only in the composition range where the melt contains only a low concentration of the additive (La_2O_3). As can be seen from Figs 1, 3 and 5 this model describes the experimental data quite well.

System LiF-La₂O₃

The liquidus temperatures in the system LiF-La₂O₃ were measured up to 8 mole% La₂O₃. The measured part of the phase diagram is shown in Fig. 1. Temperatures of primary crystallization were recorded only at the composition up to 3 mole% La₂O₃. At higher concentrations, lanthanum oxide was not dissolved completely even after 3 h at the heating temperature of 1050°C. It means that the dissolution of lanthanum oxide is very slow. The eutectic temperature and composition are 829°C and 2.4 mole% La₂O₃, respectively. The calculation was made under assumption that lanthanum oxide brings two new particles into the melt ($k_{\rm St}$ =2). This assumption gives the best agreement between the measured and calculated data. From the obtained results it follows that the chemical reaction has to occur during dissolution of lanthanum oxide.

In order to identify the main substances in the melt, X-ray diffraction analysis of the sample contain-

Fig. 2 XRD pattern of quenched melt of the system LiF-La₂O₃ (4 mole% of La₂O₃)

ing 4 mole% of La_2O_3 was made. The melt was equilibrated for 3 h and then quenched. The XRD record is shown in Fig. 2. It follows that the melt consisted of LiF, LaOF, LiLaO₂ and some undissolved La_2O_3 . It can be assumed that the following chemical reaction takes place in the system:

$$LiF+La_2O_3=LaOF+LiLaO_2$$
 (2)

However, as in the case of aluminates [6], LiLaO₂ can be actually a mixed oxide of spinel type (Li₂O·La₂O₃) which is formed during solidification. Dissolution of La₂O₃ can be described by the reaction scheme

$$2\text{LiF}+\text{La}_2\text{O}_3=2\text{LaOF}+\text{Li}_2\text{O}$$
 (3)

According to the Berul and Voskresenskaya [1] also another reactions may occur:

$$6LiF + La_2O_3 = 3Li_2O + 2LaF_3 \tag{4}$$

$$12\text{LiF}+\text{La}_2\text{O}_3=2\text{Li}_3\text{LaF}_6+3\text{Li}_2\text{O}$$
(5)

However, according to van der Meer *et al.* [7] lithium lanthanide cryolites (Li₃LnF₆) are not formed from elements with atomic numbers from 57 to 62 (La–Sm). It means that the reaction (5) is not probable. Standard reaction Gibbs energy of reaction (4) is positive ($\Delta_r G_{1173K}^{\emptyset}(3)$ =340.112 kJ mol⁻¹) and LaF₃ was not recorded in the XRD pattern. This implicates that reaction (4) is not probable.

System NaF-La₂O₃

The liquidus temperatures in the system NaF–La₂O₃ were measured up to 7 mole% La₂O₃. The measured part of the phase diagram is shown in Fig. 3. Temperatures of primary crystallization were recorded only at the composition up to 2.5 mole% La₂O₃. As in the case of LiF–La₂O₃ system higher concentrations of the lanthanum oxide did not dissolve completely even after 3 h at 1050°C. The eutectic temperature and composition are 980°C and 1.9 mole% La₂O₃, respectively. The calculation was made under the assumption that lanthanum oxide brings two new particles into the melt. This assumption gives the best agreement between the measured and calculated data.

In order to identify the main species in the melt, X-ray diffraction analysis of the solidified samples containing 4 and 8 mole% of La₂O₃, respectively, was made. The melt was equilibrated for 3 h and then quenched. The XRD record of the sample containing 8 mole% La₂O₃ is shown in Fig. 4. The sample consisted of NaF, LaOF, Na₂O and some undissolved La₂O₃. This means that in the system NaF–La₂O₃ proceed similar chemical reaction as in the system LiF–La₂O₃:

$$2NaF + La_2O_3 = 2LaOF + Na_2O \tag{6}$$

Fig. 3 NaF-rich part of the phase diagram of the system NaF-La₂O₃. \circ – experimental; full line – calculated

Fig. 4 XRD pattern of quenched melt of the system NaF–La₂O₃ (8 mole% of La₂O₃)

System KF-La₂O₃

The liquidus temperatures in the system KF–La₂O₃ were measured up to 4 mole% La₂O₃. The measured part of the phase diagram is shown in Fig. 5. It should be noted that temperatures of primary crystallization were recorded only at the composition up to 2.0 mole% La₂O₃. As it was mentioned above, higher amounts of La₂O₃ dissolve rather slowly. The solubility of lanthanum oxide in potassium fluoride is the lowest among the investigated pure alkali fluorides. The eutectic temperature and composition are 849.5°C and 1.1 mole% La₂O₃, respectively. The calculation was made under assumption that lanthanum oxide brings two new particles into the melt.

It seems that the same behaviour as in the other alkali fluoride melts occurs. Therefore the X-ray diffraction analysis was not realised in this system.

System (LiF-NaF-KF)_{eut}-La₂O₃

The liquidus temperatures in the system La_2O_3 – eutectic melt LiF–NaF–KF (46.5 mole% LiF;

Fig. 5 KF-rich part of the phase diagram of the system KF-La₂O₃. 0 – experimental; full line – calculated

Fig. 6 Part of the phase diagram of the system $(LiF-NaF-KF)_{eut}-La_2O_3$

11.5 mole% NaF; 42.0 mole% KF) were measured up to 6 mole% La_2O_3 . The measured part of the phase diagram is shown in Fig. 6.

The measured system is a part of a quaternary system LiF–NaF–KF–La₂O₃. In this case the eutectic mixture is considered as an invariant point and one may expect up to 4 measured transition temperatures at each measured composition. However, the temperature during measurements was recorded below 200°C and only two transition temperatures were obtained. This phenomenon occurs in the case when the measured system copies the line of the monovariant equilibrium of the quaternary system [8, 9]. Then, one may conclude that all alkali fluorides crystallize together in the area 0–1.5 mole% La₂O₃.

The solubility of lanthanum oxide in the eutectic mixture of the system LiF–NaF–KF is lower than in pure LiF and NaF but higher than in KF. The coordinates of eutectic point are 1.5 mole% La_2O_3 and 446.5°C.

Conclusions

The solubility of lanthanum oxide in molten alkali fluorides was studied. It was found that it decreases in the order LiF>NaF>KF. Solubility of La_2O_3 in the eutectic mixture (LiF–NaF–KF)_{eut} lies between the solubilities of La_2O_3 in the systems NaF and KF.

During dissolution lanthanum oxide reacts with the fluoride melt according to the scheme:

$$2MF + La_2O_3 = 2LaOF + M_2O$$
(7)

where M=Li, Na, K.

This dissolution mechanism is supported by X-ray patterns of quenched melt.

Acknowledgements

This work was supported by Science and Technology Assistance Agency under the contract No. APVT-20-000204.

References

- 1 S. I. Berul and N. K. Voskresenskaya, Zh. Neorg. Khim., 8 (1963) 1431.
- 2 E. Stefanidaki, C. Hasiotis and C. Kontoyannis, Electrochim. Acta, 46 (2001) 2665.
- 3 H. Le Chatelier, C. R. Acad. Sci. (Paris), 100 (1885) 441.
- 4 I. Schröder, Z. Phys. Chem., 11 (1893) 449.
- 5 W. Z. Stortenbeker, Phys. Chem., 10 (1892) 183.
- 6 Wikipedia, http://en.wikipedia.org.
- 7 J. P. M. van der Meer, R. J. M. Konings, M. H. G. Jacobs and H. A. J. Oonk, J. Nucl. Mater., 335 (2004) 345.
- 8 A. Reisman, Phase Equilibria, Academic Press, New York and London, 1970.
- 9 P. Fellner and K. Matiašovský, Chem. Pap., 28 (1974) 201.

Received: April 19, 2007 Accepted: May10, 2007 OnlineFirst: September 24, 2007

DOI: 10.1007/s10973-007-8533-6